The realization space is [1 1 0 x1^2 - x1 + 1 0 1 1 0 -x1^5 + 4*x1^4 - 6*x1^3 + 6*x1^2 - 3*x1 + 1 1 x1^2 - x1 + 1] [0 1 1 2*x1^2 - 2*x1 + 1 0 0 1 -x1^3 + 3*x1^2 - 2*x1 + 1 -2*x1^5 + 8*x1^4 - 11*x1^3 + 9*x1^2 - 4*x1 + 1 -x1 + 1 -x1^3 + 3*x1^2 - 2*x1 + 1] [0 0 0 0 1 1 1 x1^3 - 2*x1^2 + 2*x1 - 1 2*x1^5 - 4*x1^4 + 5*x1^3 - 3*x1^2 + x1 x1 x1^3 - x1^2 + x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (2*x1^12 - 13*x1^11 + 40*x1^10 - 75*x1^9 + 96*x1^8 - 87*x1^7 + 56*x1^6 - 25*x1^5 + 7*x1^4 - x1^3) avoiding the zero loci of the polynomials RingElem[x1, x1 - 1, x1^2 - x1 + 1, 2*x1^2 - 2*x1 + 1, x1^3 - 3*x1^2 + 2*x1 - 1, 2*x1^2 - x1 + 1, 2*x1 - 1, 3*x1^2 - 2*x1 + 1, 2*x1^3 - 5*x1^2 + 4*x1 - 2]